
MATH2050C Assignment 2

Deadline: Jan 21, 2025.

Hand in: Section 2.4 no. 17. Supp Problems no 1, 4, 5.

Section 2.4 no. 14, 15, 17.

Supplementary Problems

1. Prove the Nested Interval Property: Let [an, bn] satisfies [an+1, bn+1] ⊂ [an, bn] for all
n ≥ 1. Show that there is x ∈ R such that x ∈ [an, bn] for all n ≥ 1. Hint: Use the order
completeness property.

2. Find the decimal representation of the numbers 0.502 and 1/7.

3. Show that there are infinitely many rational and irrational numbers lying between two
distinct numbers.

4. Show that the cardinal number of any interval is equal to the cardinal number of R.

5. Show that |R2| = |R|. Recall that R2 = {(x, y) : x, y ∈ R}.

6. A real number is called an algebraic number if it is a root of some equation anx
n +

an−1x
n−1+· · ·+a0 = 0 with integral coefficients. Show that the set of all algebraic numbers

is a countable set containing all rational numbers and numbers of the form a1/k, a > 0, k ≥
1.

See next page for notes on real numbers.
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The Real Number System II

Last time we ended by showing the existence of irrational numbers in R. Now we study the
density of rational and irrational numbers.

Proposition 2.1 Let x > 0, there is a unique n ∈ N such that n− 1 ≤ x < n.

Proof. The set E = {k : x < k} is nonempty according to the Archimedean Property. By the
well-ordering principle of N, E has a least element n in E. It means n − 1 does not belong to
E, so n− 1 ≤ x.

The well-ordering principle refers to the following self-evident fact: Every nonempty set E in N
has a least element m in E, that is, m ≤ k, ∀k ∈ E.

Applying the same argument to F = {k : x ≤ k}, there is a unique m ∈ N such that
m− 1 < x ≤ m.

Proposition 2.2 For any real numbers a, b, 0 < a < b, there is a rational number and an
irrational number strictly lying between a and b.

Immediately it implies there are infinitely many rational numbers and irrational numbers strictly
lying between a and b. (Why?)

Proof. It suffices to show there is somem/n ∈ (a, b). In fact, since b−a > 0, by the Archimedean
Principle, there is some n ∈ N such that b − a > 1/n, that is, n(b − a) > 1, or nb > na + 1.
Now, Proposition 2.1 ensures that there is some m such that m − 1 ≤ na < m. In particular,
a < m/n. As nb > na+ 1 ≥ m− 1 + 1 = m, we have b > m/n too, done.

Applying what has been proved to the numbers a/
√

2 and b/
√

2, we get a rational number c
between a/

√
2 and b/

√
2. Then

√
2c is an irrational number lying between a and b.

Up to this point we have shown that an order-complete field R has elements called rational and
irrational numbers both of which are “dense” inside R. Every positive rational number is of the
form p/q. By the usual division rule it could be represented as a0.a1a2 · · · where a0 ∈ N

⋃
{0}

and ak ∈ {0, 1, 2, · · · , 9}. It inspires to represent the irrational numbers in a similar manner.
An algorithm enables us to do this is already hidden in Proposition 2.1.

Now we show that every real number has a decimal representation. The algorithm is: Let x be
a positive number. First, find a0 ∈ N

⋃
{0} such that 0 ≤ x − a0 < 1. The existence of a0 is

guaranteed by Proposition 2.1. Then 0 ≤ 10(x− a0) < 10. Next, we find a1 ∈ {0, 1, 2, · · · , 9} to
satisfy a1 ≤ 10(x−a0) < a1 + 1. Then 0 ≤ 10(x−a0)−a1 < 1 and 0 ≤ 10[10(x−a0)−a1] < 10.
We find a2 ∈ {0, 1, 2, · · · , 9} such that a2 ≤ 10[10(x− a0)− a1] < a2 + 1, so 0 ≤ 10[10(x− a0)−
a1]−a2 < 1 and 0 ≤ 10{10[10(x−a0)−a1]−a2} < 10. Repeating this process, we get ak, k ≥ 1,
in {0, 1, 2, · · · , 9}, such that

0 ≤ a− a0.a1a2 · · · ak <
1

10k
, k ≥ 1 ,

where
a0.a1a2 · · · ak ≡ a0 +

a1
10

+
a2
102

+ · · ·+ ak
10k

.

We conclude that every positive real number x can be associated to a set consisting of rational
numbers {a0, a0.a1a2, a0.a1a2a3, · · · } such that x is the supremum of this set. We write x as
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a0.a1a2a3 · · · and call it the decimal representation of x. Similar representations can be achieved
by replacing 10 by other natural numbers greater than 1 in the algorithm above. Binary (n = 2),
ternary (n = 3), hexadecimal (n = 16) representations are in particular useful.

We make a degression to study infinite sets.

Each nonempty set A is assigned a symbol called its cardinal numbers denoted by |A|. It is
equal to the number of elements when the set is a finite one. Recall some definitions.

First, two sets A and B have the same cardinal numbers iff there is a bijective map between
them. Write |A| = |B| when this holds. Next, |A| ≤ |B| if there is an injective map from A to
B. It is clear that |A| ≤ |B| and |B| ≤ |C| implies |A| ≤ |C|.

Proposition 2.3 Given two sets A and B. If there is a surjective map from B to A, then
|A| ≤ |B|.
Proof. Let this map be f . For each a ∈ A, the preimage f−1(a) is nonempty since f is surjec-
tive. Pick some b ∈ f−1(a) and denote it by g(a). Then the map a 7→ g(a) sets up an injective
map from A to B, done.

We state without proof the following fundamental result.

Schroder-Bernstein Theorem. For two sets A and B, |A| ≤ |B| and |A| ≤ |B| implies
|A| = |B|.

A set is called a countable set if it is a finite set or its cardinal number is equal to |N|. An
infinite set is called uncountable if it is not countable.

Proposition 2.4. Every infinite set A satisfies |A| ≥ |N|.
Proof. It suffices to show an infinite set A must contain a countably infinite subset. The
identity map from this subset to itself is an injective map from this set to A. Indeed, pick
a1 from A and then A \ {a1} is still an infinite set. So pick a2 from it. The set A \ {a1, a2}
is still an infinite set. Keep doing this we can extract a countable subset {a1, a2, a3 · · · , } from A.

Therefore, countable infinity is the “smallest infinity”. Properties of countable sets are listed
below.

Proposition 2.5

(a) Let Ak, k ≥ 1, be countable sets. Then
⋃

k Ak is countable.

(b) For an infinite set A and a countable set C, |A
⋃
C| = |A|.

(c) For an infinite set A and a countable subset C, |A \ C| = |A| provided A \ C is an infinite
set.

Proof. (a) Done in class using the “snake map”.

(b) Pick B = {a1, a2, · · · } from A. This is possible from the proof of Proposition 2.4. Then we
have the decomposition A = A \ B

⋃
B and A

⋃
C = A \ B

⋃
B
⋃
C. Since B and B

⋃
C are

both countably infinite, there is a bijective map between them. On the other hand, the identity
map is a bijective map from A \B to itself. Putting these two maps together, we get a bijective
map between A and A

⋃
C.
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(c) Use (b) by observing A = A \ C
⋃
C.

Proposition 2.6 |(0, 1)| > |N|. In other words, there is an injective map from N to (0, 1) but
there is no bijective map between (0, 1) and N.

Proof. Every x ∈ (0, 1) has decimal representation 0.a1a2a3 · · · where ak ∈ {0, 1, · · · , 9}.
Let the set of decimal representations be D. It can be shown that ϕ : x 7→ 0.a1a2a3 · · · is
injective from (0, 1) to D. However, it is not surjective. Let M = {0.a1a2a3 · · · : ak =
9, ∀k ≥ k0 for some k0}. Then ϕ maps (0, 1) bijectively to D \ M . It is not hard to show
that M is countable. By Proposition 2.5(c), |D| = |D \M |. Next, we claim |D| > |N|. This is
done by the famous argument of Cantor, see Theorem 2.5.5 in our text book. It follows that
|(0, 1)| = |D \M | = |D| > |N|.

Proposition 2.7 |R| = |(0, 1)|.
Proof. The map tanπ(x− 1/2) is bijective from (0, 1) to R, done.

As an exercise, you are asked to show the cardinal number of any interval is equal to that of
R. It is natural to ask, is there a set A whose cardinal number lying strictly between the set
of natural numbers and the set of real numbers, that is, |N| < |A| < |R|? This is called the
continuum hypothesis. It is known that it is independent of axiomatic set theory, the foundation
of mathematics used today. It means that the continuum hypotheses can never be proved or
disproved!


